TITLE: “Clipper: p-value-free FDR control on high-throughput data from two conditions.”
ABSTRACT: High-throughput biological data analysis commonly involves identifying “interesting” features (e.g., genes, genomic regions, and proteins), whose values differ between two conditions, from numerous features measured simultaneously. The most widely-used criterion to ensure the analysis reliability is the false discovery rate (FDR). Existing bioinformatics tools primarily control the FDR based on p-values. However, obtaining valid p-values relies on either reasonable assumptions of data distribution or large numbers of replicates under both conditions, two requirements that are often unmet in biological studies. To address this issue, we propose Clipper, a general statistical framework for FDR control without relying on p-values or specific data distributions.